First, I would like to summarize some basic and essential command lines for plotting a 2D graph.
When openning an Ipython notebook, one can use the following command:
ipython notebook --pylab
Which automatically import pylab.
Then import pandas:
import pandas as pd
read data (.dat) file using:
data = pd.read_csv('directory+filename', header = 12)
Here header the number of rows of describing text before data in your .dat file.
to view the data or data information, using some of the following commands:
data #show data
data.head() #show first a few rows
data.tail() #show last a few rows
data.keys() #show the key words for each column
data.info() #summarize columns
data.dtypes() #show the data type of each column
data.describe() #quickly gives mean, std, min, max values of the numberical columns
if you want to see all the data in a table, instead of only a few rows:
pd.options.display.max_rows = 1500 # if you have 1500 rows
data
you will see all data.
If you want to delete a redundant column:
data2.drop( 'column name/key', axis = 1, inplace=True)
Now, we want to plot the numerical data:
fig=figure()
# fig.clf() #used for clear previous plot in the same figure
ax = fig.add_subplot(1,1,1)
plot_No1 = ax.plot(data.Temperature[0:186], data.Resistance[0:186], linewidth = 2., label=r"0T")
plot_No2 = ax.plot(data.Temperature[187:231],data.Resistance[187:231], linewidth = 2.,label=r"1T")
ax.legend(loc = 2) # show legned, with loc(ation) at 2 (up-left)
xlabel(r'Temperature (K)', fontsize = 20)
ylabel(r'Resistance ($\Omega$)', fontsize = 20)
ax.tick_params(axis='both', which='major', labelsize=15)
savefig('fig', transparent = True)
These commands can help you to quickly visualize your data.
I will explore many more advanced features in the future.
No comments:
Post a Comment